Example of handle disconnect from the device
1. Once the device is connected, start the ConnectedThread to begin managing a Bluetooth connection.

2. Implement ConnectedThread
When the device is disconnected, IOExceptin is thrown in while roop in run function. Notify to the UI Activity.

Example of handle reconnect the device

1. Override AsyncTask and make an application run background.

2. Excecute AsyncTask when device was disconnected.

public synchronized void connected(BluetoothSocket socket,

BluetoothDevice device) {

 // Cancel the thread that completed the connection

 	if (mConnectThread != null) {

mConnectThread.cancel();

mConnectThread = null;

}

 // Cancel any thread currently running a connection

 if (mConnectedThread != null) {

mConnectedThread.cancel();

mConnectedThread = null;

}

 // Cancel the accept thread because we only want to connect to one device

 if (mAcceptThread != null) {

mAcceptThread.cancel();

mAcceptThread = null;

}

 // Start the thread to manage the connection and perform transmissions

 mConnectedThread = new ConnectedThread(socket);

 mConnectedThread.start();

 // Send the name of the connected device back to the UI Activity

 Message msg = mHandler.obtainMessage(OpticonRL.MESSAGE_DEVICE_NAME);

 Bundle bundle = new Bundle();

 bundle.putString(OpticonRL.DEVICE_NAME, device.getName());

 msg.setData(bundle);

 mHandler.sendMessage(msg);

 setState(STATE_CONNECTED);

/**

 * This thread runs during a connection with a remote device.

 * It handles all incoming and outgoing transmissions.

 */

 public class ConnectedThread extends Thread {

 private final BluetoothSocket mmSocket;

 private final InputStream mmInStream;

 public ConnectedThread(BluetoothSocket socket) {

 Log.d(TAG, "create ConnectedThread");

 mmSocket = socket;

 InputStream tmpIn = null;

 // Get the BluetoothSocket input and output streams

 try {

 tmpIn = socket.getInputStream();

 } catch (IOException e) {

 Log.e(TAG, "temp sockets not created", e);

 }

 mmInStream = tmpIn;

 }

 public void run() {

 Log.i(TAG, "BEGIN mConnectedThread");

 byte[] buffer = new byte[1024];

 int bytes;

 // Keep listening to the InputStream while connected

 while (true) {

 try {

 // Read from the InputStream

 bytes = mmInStream.read(buffer);

 // Send the obtained bytes to the UI Activity

 mHandler.obtainMessage(OpticonRL.MESSAGE_READ,

bytes, -1, buffer).sendToTarget();

 } catch (IOException e) {

 Log.e(TAG, "disconnected", e);

 // Connection is LOST (disconnected from device)

 break;

 }

 }

 }

 public void cancel() {

 try {

mmSocket.close();

 } catch (IOException e)

 {

 	Log.e(TAG, "ConnectedThread close()", e);

 }

 }

 }

private class Reconnect extends AsyncTask<BluetoothDevice, Void, Boolean > {

 	BluetoothService mService = null;

 	boolean stopReconnect = false;

 	

 	public Reconnect(BluetoothService mService){

 		this.mService = mService;

 	}

 	

 	@Override

 	protected void onCancelled(){

 	}

	@Override

	protected Boolean doInBackground(BluetoothDevice... arg0) {

 	// if device is not connected, create timer and keep connecting for certain time.

	}

}

		private Reconnect task = new Reconnect(mService);

		task.execute(device);

